Entropy-based Variational Learning of Finite Inverted Beta-Liouville Mixture Model

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Finite Beta-Liouville Mixture Models via Variational Bayes for Proportional Data Clustering

During the past decade, finite mixture modeling has become a well-established technique in data analysis and clustering. This paper focus on developing a variational inference framework to learn finite Beta-Liouville mixture models that have been proposed recently as an efficient way for proportional data clustering. In contrast to the conventional expectation maximization (EM) algorithm, commo...

متن کامل

Variational Learning for Finite Inverted Dirichlet Mixture Models and Its Applications

Variational Learning for Finite Inverted Dirichlet Mixture Models and Its Applications Parisa Tirdad Clustering is an important step in data mining, machine learning, computer vision and image processing. It is the process of assigning similar objects to the same subset. Among available clustering techniques, finite mixture models have been remarkably used, since they have the ability to consid...

متن کامل

Variational approximations in Bayesian model selection for finite mixture distributions

Variational methods for model comparison have become popular in the neural computing/machine learning literature. In this paper we explore their application to the Bayesian analysis of mixtures of Gaussians. We also consider how the Deviance Information Criterion, or DIC, devised by Spiegelhalter et al. (2002), can be extended to these types of model by exploiting the use of variational approxi...

متن کامل

Inverted Mel Feature Set based Text-Independent Speaker Identification using Finite Doubly Truncated Gaussian Mixture Model

This paper provides an efficient approach for text-independent speaker identification using the Inverted Mel-frequency Cepstral Coefficients as feature set and Finite Doubly Truncated Gaussian Mixture as Model (FDTGMM). Over the years, Mel-Frequency Cepstral Coefficients (MFCC), modeled on the human auditory system, has been used as a standard acoustic feature set for speech related application...

متن کامل

Positive Data Clustering based on Generalized Inverted Dirichlet Mixture Model

Positive Data Clustering based on Generalized Inverted Dirichlet Mixture Model Mohamed Al Mashrgy, Ph.D. Concordia University, 2015 Recent advances in processing and networking capabilities of computers have caused an accumulation of immense amounts of multimodal multimedia data (image, text, video). These data are generally presented as high-dimensional vectors of features. The availability of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The International FLAIRS Conference Proceedings

سال: 2021

ISSN: 2334-0762

DOI: 10.32473/flairs.v34i1.128379